If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-14x-34=10
We move all terms to the left:
49x^2-14x-34-(10)=0
We add all the numbers together, and all the variables
49x^2-14x-44=0
a = 49; b = -14; c = -44;
Δ = b2-4ac
Δ = -142-4·49·(-44)
Δ = 8820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8820}=\sqrt{1764*5}=\sqrt{1764}*\sqrt{5}=42\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-42\sqrt{5}}{2*49}=\frac{14-42\sqrt{5}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+42\sqrt{5}}{2*49}=\frac{14+42\sqrt{5}}{98} $
| 11/3x+3=19 | | 7/8-1/3t=2/5 | | 5.07+6.2v=12.7v-6.63 | | 11=d6 | | 4-6b=-7b | | 8y/8=-2/8 | | 4u+3=8u-9 | | 4(2x-2)-2=5-(3x+4) | | -3(-7w+1)-7w=2(w-6)-5 | | 2/3g+1/2g=13 | | 16q-3q=3q+40 | | 2x^2+12x=936 | | 10=4/5t+8 | | 5(v-2)-1=-3(-2v+7)-9v | | 7.5r-19.95=18.72+15.33+11.1r | | 4(x-1)+3x=31 | | -7u-13=-5(u+1) | | 1/5t-0.4+2/5t=0.6-1/10t | | 169=x^2+49+x^2 | | 0.25+1.50x=0.375 | | 4(w+2)-7w=35 | | .25(8x+4)=2x-4 | | 100-25x2=0 | | -7x+4(x-3)=-15 | | 100-25x2=100 | | 0.4x-0.4=0.5x-3 | | -6+18b=17b+7 | | x=8x-4(3x-3)+2 | | -1x^2+1(x+2)=-1 | | 12=-2n+8 | | 16=n=4 | | 16÷n=2 |